Амперметр своими руками в домашних условиях

Шунт для амперметра – как сделать самому, откалибровать и расширить возможности тестера

Измерение силы тока – достаточно важная процедура для расчета и проверки электрических схем. Если вы создаете прибор с потребляемой мощностью на уровне зарядки для мобильного телефона – для измерения достаточно обычного мультиметра.

Типичный недорогой бытовой тестер имеет предел измерения силы тока 10 А.

На большинстве подобных приборов имеется дополнительный разъем для измерения больших величин. Переставляя измерительный кабель, вы, наверное не задумывались, по какой причине надо организовывать дополнительную цепь, и почему нельзя просто воспользоваться переключателем режимов?

Почему одним прибором нельзя измерять широкий диапазон величин?

Принцип работы любого амперметра (стрелочного или катушечного) основан на переводе измеряемой величины в визуальное ее отображение. Стрелочные системы работают по механическому принципу.

Через обмотку протекает ток определенной величины, заставляя ее отклоняться в поле постоянного магнита. На катушке закреплена стрелка. Остальное – дело техники. Шкала, разметка и прочее.

Зависимость угла отклонения от силы тока на катушке не всегда линейная, это часто компенсируется пружиной особой формы.

Для обеспечения точности измерения, шкала делается по возможности с большим количеством промежуточных делений. В таком случае, для обеспечения широкого предела измерений шкала должна быть огромного размера.

Или же надо иметь в арсенале несколько прибором: амперметр на десятки и сотни ампер, обычный амперметр, миллиамперметр.

В цифровых мультиметрах картина схожая. Чем точнее шкала – тем ниже предел измерения. И наоборот – завышенная величина предела, дает большую погрешность.

Слишком загруженной шкалой пользоваться неудобно. Большое количество положений усложняют конструкцию прибора, и увеличивают вероятность потери контакта.

Применив закон Ома для участка цепи, можно изменить чувствительность прибора, установив шунт для амперметра.

Популярное: Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Справка: Шунтом называется обходное сопротивление, проводник, подключенный параллельно измеряемому участку цепи. Часть тока устремляется в обход основного участка, и на подключенный прибор приходится меньшая нагрузка.

Как рассчитать шунт для амперметра?

  1. Расчет шунта для незначительного расширения верхнего предела шкалы амперметра.Сопротивление шунта вычисляется по формуле. Rш = (Rа * Iа)/(I – Iа)Rш – сопротивление, которым должен обладать шунт.
    Rа – внутреннее сопротивление амперметра без нагрузки. I – предполагаемый ток, при котором стрелка прибора займет максимальное положение в конце шкалы.

Iа – ток, при котором стрелка прибора занимает крайнее положение в конце шкалы без применения шунта.Величина сопротивления рассчитывается по формуле в Омах, сила тока в Амперах.

Как сделать шунт для амперметра, какие материалы при этом используются

Фабрично изготовленные шунты рассчитываются под готовые приборы, их параметры учитываются еще при вытягивании проволоки.

При создании учитывается даже расстояние от центра проволоки до мест подключения контактов. Несмотря на массивность конструкции, шунт достаточно точный и чувствительный прибор. На погрешность влияет даже разнесение контактов для прибора и контактов для измеряемой цепи.

Это низкоомные приборы. Сопротивление измеряется единицами Ом. Поэтому на рабочую величину влияет даже сечение проводника. При точной подгонке свойств шунта, можно делать на шине пропилы, для изменения удельного сопротивления.

Еще один вариант юстировки фабричного шунта – подбор дополнительных сопротивлений. Такой способ часто практикуют доморощенные «Кулибины».

Шунт для амперметра своими руками можно изготовить из любого материала, обладающего низким сопротивлением и хорошей теплопроводностью. Если измеряемые токи не более 10 ампер – воспользуйтесь обычной стальной скрепкой большого размера.

Сталь противостоит влиянию высоких температур, и неплохо паяется (при необходимости стационарного монтажа). Если у вас есть медь – тоже хороший выбор. Только не переусердствуйте при калибровке. Случайно отпиленный для изменения сечения кусок нет смысла паять обратно.

Индуктивность при протекании больших токов может исказить результат. Лучше применить иной материал, или уложить шунт волнами.

Как подобрать шунт для амперметра максимально точно?

Для стенда по подбору сопротивления нам понадобятся:

  • блок питания,
  • образцовый прибор,
  • качественные провода (медные),
  • переменное сопротивление,
  • собственно шунт и амперметр, для которого он готовится.

Схема нужна для точного подбора сопротивления шунта и калибровки прибора с установленной накладкой.

Установив под нагрузкой (заряд аккумулятора) минимальное и максимальное значение – приступаем к ступенчатому изменению силы тока переменным сопротивлением. Полученные на контрольном приборе значения наносим на шкалу.

Вспоминаем физику. урок по расчету шунта для амперметра.

Цифровой вольтметр своими руками

> Советы электрика > Цифровой вольтметр своими руками

При работе с различными электронными изделиями возникает потребность измерять режимы или распределение переменных напряжений на отдельных элементах схемы.

Обычные мультиметры, включённые в режиме AC, могут фиксировать лишь большие значения этого параметра с высокой степенью погрешности.

При необходимости снятия небольших по величине показаний желательно иметь милливольтметр переменного тока, позволяющий производить измерения с точностью до милливольта.

Амперметр на светодиодах своими руками (схема)

Цифровой амперметр на светодиодах – удобный способ отображения информации, при котором имеет значение не только модуль измеряемой величины (что, кстати, значительно удобнее определять не по отклонению стрелочного индикатора, а по величине столбчатой диаграммы, или при помощи мини-дисплея), но и частоту изменения этого параметра.

Описание схемы

Светодиоды не отличаются большой мощностью, но использовать их в слаботочных электрических цепях допустимо и целесообразно. В качестве примера можно рассмотреть схему получения цифрового амперметра для определения силы тока в аккумуляторной батарее автомобиля, при номинальном диапазоне значений в 40…60 мА.

Вариант внешнего вида амперметра на светодиодах в столбик

Количество использованных светодиодов определит пороговое значение тока, при котором в работу будет включаться один из светодиодов. В качестве операционного усилителя можно использовать LM3915, либо подходящий по параметрам микроконтроллер. На вход будет подаваться напряжение через любой низкоомный резистор.

Удобно отражать результаты измерения в виде столбчатой диаграммы, где весь, практически используемый диапазон тока будет разделяться на несколько сегментов по 5…10 мА. Плюсом LED является то, что в схеме можно использовать элементы разного цвета – красного, зелёного, синего и т.д.

Микросхема СА3162Е

Также BY42A можно встретить в двух вариантах исполнения платы, но цветовая маркировка проводов остается прежней. Для снижения влияния температуры окружающей среды на измерения, добавочный резистор изготавливают из материала обладающего малым температурным коэффициентом сопротивления. Подключение может осуществляться через специальный гнездовой разъем, или при помощи спайки. В них находится преобразователь входного сигнала в угол поворота стрелки, показывающий на шкале величину измеряемого напряжения. Еще для снижения температурного фактора при измерениях, последовательно с катушкой амперметра включают добавочный резистор из материла такого же рода. Подключение При помощи вольтметра можно измерить текущее напряжение в сети электроснабжения.


Ясно, что пару ампер можно легко померять обычным дешёвым мультиметром, а как быть с 10, 15, 20 и более ампер? Показания шкалы также умножаются на n. Самодельный автомобильный вольтметр на микросхемах. При неправильном подключении табло прибора будет показывать нулевые значения.

Получение и передача переменного тока намного проще, чем постоянного: меньше потерь энергии, С помощью трансформаторов мы можем легко менять напряжение переменного тока.


Микросхема САЕ для цифровых вольтметра и амперметра Существуют и другие микросхемы аналогичного действия. Измерительные трансформаторы на схемах изображают как обычные трансформаторы. Нюанс при подключении китайского вольтметра амперметра

Шунт для амперметра своими руками

Многие домашние электрики недовольны тестерами промышленного производства, поэтому задумываются о том, как из амперметра сделать вольтметр, а также как повысить функциональность тестера промышленного производства. Для этой цели можно изготовить специальный шунт.

Перед тем как приступить к работе, следует выполнить расчет шунта для микроамперметра и найти материал, обладающий хорошей проводимостью.

Конечно, для большей точности измерений можно просто приобрести миллиамперметр, но такие приборы стоят довольно дорого, а применять их на практике приходится весьма редко.

В последнее время в продаже появились тестеры, рассчитанные на большое напряжение и сопротивление. Для них шунт не нужен, но и стоимость их очень высока. Для тех, кто использует классический тестер, изготовленный еще в советское время, или пользуется самодельным, шунт просто необходим.

Недостатки промышленного амперметра

Подобрать токовый амперметр — дело непростое. Большинство приборов выпускается на Западе, в Китае или в странах СНГ, и в каждой стране к ним предъявляют свои индивидуальные требования.

Также в каждой стране свои допустимые величины постоянного и переменного тока, требования к розеткам.

В связи с этим при подключении амперметра западного производства к отечественному оборудованию может оказаться, что прибор не может правильно измерить силу тока, напряжение и сопротивление.

С одной стороны, такие устройства очень удобны. Они компактны, снабжаются зарядным устройством и просты в пользовании.

Классический стрелочный амперметр не занимает много места и имеет визуально понятный интерфейс, но он часто не рассчитан на существующее напряжение сопротивление. Как говорят бывалые электрики, на шкале «не хватает ампер».

Приборы, устроенные таким образом, обязательно нуждаются в шунтировании. Например, бывают ситуации, когда нужно измерить величину до 10а, а на шкале прибора отсутствует цифра 10.

Вот основные недостатки классического фабричного амперметра без шунта:

  • Большая погрешность в измерениях,
  • Диапазон измеряемых величин не соответствует современным электроприборам,
  • Крупная калибровка не позволяет измерять малые величины,
  • При попытке измерить большую величину сопротивления прибор «зашкаливает».

Для чего нужен шунт

Шунт необходим для того, чтобы правильно измерить сопротивление в тех случаях, если амперметр не предназначен для измерения таких величин. Если домашний мастер часто имеет дело с такими величинами, есть смысл изготовить шунт для амперметра своими руками.

Шунтирование значительно повышает точность и эффективность его работы. Это важное и нужное устройство для тех, кто часто пользуется тестером. Обычно его используют владельцы классического амперметра 91с16.

Вот основные преимущества самодельного шунта:

  • Позволяет измерить сопротивление там, где у фабричного или самодельного амперметра не хватает делений на шкале,
  • Помогает адаптировать зарубежные амперметры к российским электрическим цепям,
  • Точность тестера значительно увеличивается,
  • Защищает тестер от поломок и продлевает срок его службы. Любая ситуация, когда тестер «зашкаливает» является стрессом для прибора. Если амперметр «зашкаливает» часто (обычно так бывает, если он отсутствует), прибор быстро выходит из строя, а починить его непросто (легче купить новый).

Порядок изготовления

С самостоятельным изготовлением шунта легко справится даже первокурсник профессионально-технического училища или начинающий электрик-любитель.

Если подключить это устройство соответствующим образом, оно значительно увеличит точность амперметра и прослужит долго. В первую очередь необходимо произвести расчет шунта для амперметра постоянного тока.

Узнать о том, как производить расчеты, можно через интернет или из специализированной литературы, адресованной домашним электрикам. Рассчитать шунт можно с помощью калькулятора.

Для этого нужно просто подставить конкретные значения в готовую формулу.

Для того чтобы воспользоваться схемой расчета, необходимо знать реальные напряжение и сопротивление, на которые рассчитан конкретный тестер, а также представлять себе тот диапазон, до которого нужно расширить возможности тестера (это зависит от того, с какими именно приборами чаще всего приходится иметь дело домашнему электрику).

Для изготовления прекрасно подойдуттакие материалы:

Амперметр своими руками в домашних условиях — Справочник металлиста

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»).
Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор.

В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока.

Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков.

При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер.

За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения.

Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается.

Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур.

Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению.

Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Амперметр цифровой своими руками. Цифровые амперметры и вольтметры

Амперметры – это устройства, которые используются с целью определения силы тока в цепи. Цифровые модификации изготавливаются на базе компараторов. По точности измерения они различаются. Также важно отметить, что приборы могут устанавливаться в цепи с постоянным и переменным током.

По типу конструкции различают щитовые, переносные, а также встроенные модификации. По назначению есть импульсные и фазочувствительные устройства. В отдельную категорию выделены селективные модели. Для того чтобы более подробно разораться в приборах, важно узнать устройство амперметра.

Схема амперметра

Обычная схема цифрового амперметра включает в себя компаратор вместе с резисторами. Для преобразования напряжения применяется микроконтроллер.

Чаще всего он используется с опорными диодами. Стабилизаторы устанавливаются только в селективных модификациях. Для увеличения точности измерений используются широкополосные фильтры.

Фазовые устройства оснащаются трансиверами.

Модель своими руками

Собрать цифровой амперметр своими руками довольно сложно. В первую очередь для этого потребуется качественный компаратор. Параметр чувствительности должен составлять не менее 2.2 мк.

Минимальное разрешение он обязан выдерживать на уровне в 1 мА. Микроконтроллер в устройстве устанавливается с опорными диодами. Система индикации подсоединяется к нему через фильтр.

Далее, чтобы собрать цифровой амперметр своими руками нужно установить резисторы.

Чаще всего они подбираются коммутируемого типа. Шунт в данном случае должен располагаться за компаратором. Коэффициент деления прибора зависит от трансивера.

Источником стабильного тока может выступать обычная батарейка литий-ионного типа.

Устройства постоянного тока

Цифровой амперметр постоянного тока выпускается на базе высокочувствительных компараторов. Также важно отметить, что в приборах устанавливаются стабилизаторы.

Резисторы подходят только коммутируемого типа. Микроконтроллер в данном случае устанавливается с опорными диодами.

Если говорить про параметры, то минимальное разрешение устройств равняется 1 мА.

Модификации переменного тока

Амперметр (цифровой) переменного тока можно сделать самостоятельно. Микроконтроллеры у моделей используются с выпрямителями. Для увеличения точности измерения применяются фильтры широкополосного типа. Сопротивление шунта в данном случае не должно быть меньше 2 Ом.

Чувствительность у резисторов обязана составлять 3 мк. Стабилизаторы чаще всего устанавливаются расширительного типа. Также важно отметить, что для сборки понадобится триод. Припаивать его необходимо непосредственно к компаратору.

Допустимая ошибка приборов данного типа колеблется в районе 0.2 %.

Импульсные приборы измерения

Импульсные модификации отличаются наличием счетчиков. Современные модели выпускаются на базе трехразрядных устройств. Резисторы используются только ортогонального типа. Как правило, коэффициент деления у них равняется 0.8.

Как сделать простой вольтметр своими руками – схемы и рекомендации

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор.

Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор.

Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление.

То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей.

Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт.

Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением.

Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом,
  • Uп – это максимальное напряжение измеряемого предела,
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт,
  • напряжение проходит через амперметр к правому зажиму,
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3.

Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5.

Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

Амперметр цифровой своими руками. Цифровые амперметры и вольтметры

Амперметры – это устройства, которые используются с целью определения силы тока в цепи. Цифровые модификации изготавливаются на базе компараторов. По точности измерения они различаются. Также важно отметить, что приборы могут устанавливаться в цепи с постоянным и переменным током.

По типу конструкции различают щитовые, переносные, а также встроенные модификации. По назначению есть импульсные и фазочувствительные устройства. В отдельную категорию выделены селективные модели. Для того чтобы более подробно разораться в приборах, важно узнать устройство амперметра.

Устройство фазочувствительных модификаций

Фазочувствительные модели продаются на 10 и 12 В. Параметр допустимой ошибки у моделей колеблется в районе 0.2%. Счетчики в устройствах применяются только двухразрядного типа. Микроконтроллеры используются с выпрямителями.

Повышенной влажности амперметры данного типа не боятся. У некоторых модификаций имеются усилители. Если заниматься сборкой устройства, то потребуются коммутируемые резисторы. Источником стабильного тока может выступать обычная литий-ионная батарейка.

Перед установкой микроконтроллера важно припаять фильтр. Преобразователь для литий-ионной потребуется переменного типа. Показатель чувствительности у него находится на уровне 4.5 мк. При резком падении напряжения в цепи необходимо проверить резисторы.

Коэффициент деления в данном случае зависит от пропускной способности компаратора. Минимальное давление приборов данного типа не превышает 45 кПа. Непосредственно процесс преобразования тока занимает около 230 мс.

Читать также:  Как изготовить боковой кивок для летней рыбалки своими руками

Скорость передачи тактового сигнала зависит от качества счетчика.

Схема селективных устройств

Селективный цифровой амперметр постоянного тока изготавливается на базе компараторов с высокой пропускной способностью. Допустимая ошибка моделей равняется 0.3 %. Работают устройства по принципу одностадийного интегрирования. Счетчики используются только двухразрядного типа. Источники стабильного тока устанавливаются за компаратором.

Резисторы применяются коммутируемого типа. Для самостоятельной сборки модели потребуются два трансивера. Фильтры в данном случае могут значительно повысить точность измерений. Минимальное давление приборов лежит в районе 23 кПа. Резкое падение напряжения наблюдается довольно редко. Сопротивление шунта, как правило, не превышает 2 Ом. Токоизмерительная частота зависит от работы компаратора.

Универсальные приборы измерений

Универсальные приборы измерений подходят больше для бытового использования. Компараторы в устройствах часто устанавливаются не большой чувствительности. Таким образом, допустимая ошибка лежит в районе 0.5%. Счетчики используются трехразрядного типа. Резисторы применяются на базе конденсаторов. Триоды встречаются как фазового, так и импульсного типа.

Максимальное разрешение приборов не превышает 12 мА. Сопротивления шунта, как правило, лежит в районе 3 Ом. Допустимая влажность для устройств составляет 7 %. Предельное давление в данном случае зависит от установленной системы защиты.

Щитовые модели

Щитовые модификации производятся на 10 и 15 В. Компараторы в устройствах устанавливаются с выпрямителями. Допустимая ошибка приборов составляет не менее 0.4 5.

Минимальное давление устройств равняется около 10 кПа. Преобразователи применяются в основном переменного типа. Для самостоятельной сборки устройства не обойтись без двухразрядного счетчика.

Резисторы в данном случае устанавливаются со стабилизаторами.

Встраиваемые модификации

Цифровой встраиваемый амперметр выпускается на базе опорных компараторов. Пропускная способность у моделей довольно высокая, и допустимая погрешность равняется около 0.2 %. Минимальное разрешение приборов не превышает 2 мА.

Стабилизаторы используются как расширительного, так и импульсного типа. Резисторы устанавливаются высокой чувствительности. Микроконтроллеры часто применяются без выпрямителей. В среднем процесс преобразования тока не превышает 140 мс.

Модели DMK

Цифровые амперметры и вольтметры данной компании пользуются большим спросом. В ассортименте указанной фирмы имеется множество стационарных моделей. Если рассматривать вольтметры, то они выдерживают максимальное давление 35 кПа. В данном случае транзисторы применяются тороидального типа.

Микроконтроллеры, как правило, устанавливаются с преобразователями. Для лабораторных исследований устройства данного типа подходят идеально. Цифровые амперметры и вольтметры этой компании производятся с защищенными корпусами.

Устройство Торех

Указанный амперметр (цифровой) производится с повышенной проводимостью тока. Максимальное давление устройство выдерживает в 80 кПа. Минимальная допустимая температура амперметра равняется -10 градусов. Повышенной влажности указанный измерительный прибор не боится.

Устанавливать его рекомендуется рядом с источником тока. Коэффициент деления равняется только 0.8. Максимальное давление амперметр (цифровой) выдерживает в 12 кПа. Потребляемый ток устройства составляет около 0.6 А. Триод используется фазового типа.

Для бытового использования данная модификация подходит.

Устройство Lovat

Указанный амперметр (цифровой) делается на базе двухразрядного счетчика. Проводимость тока модели равняется только 2.2 мк. Однако важно отметить высокую чувствительность компаратора. Система индикации используется простая, и пользоваться прибором очень комфортно. Резисторы в этот амперметр (цифровой) установлены коммутируемого типа.

Также важно отметить, что они способны выдерживать большую нагрузку. Сопротивление шунта в данном случае не превышает 3 Ом. Процесс преобразования тока происходит довольно быстро.

Резкое падение напряжения может быть связано только с нарушением температурного режима прибора. Допустимая влажность указанного амперметра равняется целых 70 %.

В свою очередь максимальное разрешение составляет 10 мА.

Модель DigiTOP

Этот цифровой вольтметр-амперметр постоянного тока выпускается с опорными диодами. Счетчик в нем предусмотрен двухразрядного типа. Проводимость компаратора находится на отметке в 3.5 мк. Микроконтроллер применяется с выпрямителем. Чувствительность тока у него довольно высокая. Источником питания выступает обычная батарейка.

Резисторы используются в приборе коммутируемого типа. Стабилизатор в данном случае не предусмотрен. Триод установлен только один. Непосредственно преобразование тока происходит довольно быстро. Для бытового использования этот прибор подходит хорошо. Фильтры для увеличения точности измерения предусмотрены.

Если говорить про параметры вольтметра–амперметра, то важно отметить, что рабочее напряжение находится на уровне 12 В. Потребление тока в данном случае равняется 0.5 А. Минимальное разрешение представленного прибора составляет 1 мА. Сопротивление шунта располагается на отметке в 2 Ом.

Коэффициент деления вольтметра-амперметра только 0.7. Максимальное разрешение указанной модели составляет 15 мА. Непосредственно процесс преобразования тока занимает не более 340 мс. Допустимая ошибка указанного прибора располагается на уровне в 0.1 %. Минимальное давление система выдерживает в 12 кПа.

Шунт для амперметра – как сделать самому, откалибровать и расширить возможности тестера

Измерение силы тока – достаточно важная процедура для расчета и проверки электрических схем. Если вы создаете прибор с потребляемой мощностью на уровне зарядки для мобильного телефона – для измерения достаточно обычного мультиметра.

Типичный недорогой бытовой тестер имеет предел измерения силы тока 10 А.

На большинстве подобных приборов имеется дополнительный разъем для измерения больших величин. Переставляя измерительный кабель, вы, наверное не задумывались, по какой причине надо организовывать дополнительную цепь, и почему нельзя просто воспользоваться переключателем режимов?

Почему одним прибором нельзя измерять широкий диапазон величин?

Принцип работы любого амперметра (стрелочного или катушечного) основан на переводе измеряемой величины в визуальное ее отображение. Стрелочные системы работают по механическому принципу.

Через обмотку протекает ток определенной величины, заставляя ее отклоняться в поле постоянного магнита. На катушке закреплена стрелка. Остальное – дело техники. Шкала, разметка и прочее.

Зависимость угла отклонения от силы тока на катушке не всегда линейная, это часто компенсируется пружиной особой формы.

Для обеспечения точности измерения, шкала делается по возможности с большим количеством промежуточных делений. В таком случае, для обеспечения широкого предела измерений шкала должна быть огромного размера.

Или же надо иметь в арсенале несколько прибором: амперметр на десятки и сотни ампер, обычный амперметр, миллиамперметр.

В цифровых мультиметрах картина схожая. Чем точнее шкала – тем ниже предел измерения. И наоборот – завышенная величина предела, дает большую погрешность.

Слишком загруженной шкалой пользоваться неудобно. Большое количество положений усложняют конструкцию прибора, и увеличивают вероятность потери контакта.

Применив закон Ома для участка цепи, можно изменить чувствительность прибора, установив шунт для амперметра.

Популярное: Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Справка: Шунтом называется обходное сопротивление, проводник, подключенный параллельно измеряемому участку цепи. Часть тока устремляется в обход основного участка, и на подключенный прибор приходится меньшая нагрузка.

Как рассчитать шунт для амперметра?

  1. Расчет шунта для незначительного расширения верхнего предела шкалы амперметра.Сопротивление шунта вычисляется по формуле. Rш = (Rа * Iа)/(I – Iа)Rш – сопротивление, которым должен обладать шунт.
    Rа – внутреннее сопротивление амперметра без нагрузки. I – предполагаемый ток, при котором стрелка прибора займет максимальное положение в конце шкалы.

Iа – ток, при котором стрелка прибора занимает крайнее положение в конце шкалы без применения шунта.Величина сопротивления рассчитывается по формуле в Омах, сила тока в Амперах.

Как сделать шунт для амперметра, какие материалы при этом используются

Фабрично изготовленные шунты рассчитываются под готовые приборы, их параметры учитываются еще при вытягивании проволоки.

При создании учитывается даже расстояние от центра проволоки до мест подключения контактов. Несмотря на массивность конструкции, шунт достаточно точный и чувствительный прибор. На погрешность влияет даже разнесение контактов для прибора и контактов для измеряемой цепи.

Это низкоомные приборы. Сопротивление измеряется единицами Ом. Поэтому на рабочую величину влияет даже сечение проводника. При точной подгонке свойств шунта, можно делать на шине пропилы, для изменения удельного сопротивления.

Еще один вариант юстировки фабричного шунта – подбор дополнительных сопротивлений. Такой способ часто практикуют доморощенные «Кулибины».

Шунт для амперметра своими руками можно изготовить из любого материала, обладающего низким сопротивлением и хорошей теплопроводностью. Если измеряемые токи не более 10 ампер – воспользуйтесь обычной стальной скрепкой большого размера.

Сталь противостоит влиянию высоких температур, и неплохо паяется (при необходимости стационарного монтажа). Если у вас есть медь – тоже хороший выбор. Только не переусердствуйте при калибровке. Случайно отпиленный для изменения сечения кусок нет смысла паять обратно.

Индуктивность при протекании больших токов может исказить результат. Лучше применить иной материал, или уложить шунт волнами.

Как подобрать шунт для амперметра максимально точно?

Для стенда по подбору сопротивления нам понадобятся:

  • блок питания,
  • образцовый прибор,
  • качественные провода (медные),
  • переменное сопротивление,
  • собственно шунт и амперметр, для которого он готовится.

Схема нужна для точного подбора сопротивления шунта и калибровки прибора с установленной накладкой.

Установив под нагрузкой (заряд аккумулятора) минимальное и максимальное значение – приступаем к ступенчатому изменению силы тока переменным сопротивлением. Полученные на контрольном приборе значения наносим на шкалу.

Вспоминаем физику. урок по расчету шунта для амперметра.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Читать также: Кислота для обработки сварных швов по нержавейке

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Цифровой вольтметр своими руками

> Советы электрика > Цифровой вольтметр своими руками

При работе с различными электронными изделиями возникает потребность измерять режимы или распределение переменных напряжений на отдельных элементах схемы.

Обычные мультиметры, включённые в режиме AC, могут фиксировать лишь большие значения этого параметра с высокой степенью погрешности.

При необходимости снятия небольших по величине показаний желательно иметь милливольтметр переменного тока, позволяющий производить измерения с точностью до милливольта.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Читать также: Как открутить болт под внутренний шестигранник

Шунтом называется сопротивление, которое присоединяется параллельно зажимам амперметра (параллельно внутреннему сопротивлению прибора), чтобы увеличить диапазон измерений. Измеряемый ток I разделяется между измерительным шунтом (rш, Iш) и амперметром (rа, Iа) обратно пропорционально их сопротивлениям.

Для увеличения диапазона измерений в n раз шунт должен иметь сопротивление rш=(n-1)/rа

1. Электромагнитный амперметр имеет внутреннее сопротивление rа=10 Ом, а диапазон измерений до 1 А. Рассчитайте сопротивление rш шунта так, чтобы амперметр мог измерять ток до 20 А (рис. 1).

Измеряемый ток 20 А разветвится на ток Iа=1 А, который потечет через амперметр, и ток Iш, который потечет через шунт:

Отсюда ток, протекающий через шунт, Iш=I-Iа=20-1=19 А.

Измеряемый ток I=20 А должен разделиться в отношении Iа:Iш=1:19.

Отсюда вытекает, что сопротивления ветвей должны быть обратно пропорциональны токам: Iа:Iш=1/rа : 1/rш,

Сопротивление шунта должно быть в 19 раз меньше, чем сопротивление амперметра rа, чтобы через него проходил ток Iш, в 19 раз больший тока Iа=1 А, который проходит через амперметр.

2. Магнитоэлектрический миллиамперметр имеет диапазон измерений без шунта 10 мА и внутреннее сопротивление 100 Ом. Какое сопротивление должен иметь шунт, если прибор должен измерять ток до 1 А (рис. 2)?

При полном отклонении стрелки через катушку миллиамперметра будет проходить ток Iа=0,01 А, а через шунт Iш:

Ток 1 А разделится обратно пропорционально сопротивлениям: Iа:Iш=rш:rа.

Из этого соотношения найдем сопротивление шунта:

При полном отклонении стрелки через прибор пройдет ток Iа=0,01 А, через шунт – ток Iш=0,99 А, а по общей цепи – ток I=1 А.

При измерении тока I=0,5 А через шунт пройдет ток Iш=0,492 А, а через амперметр – ток Iа=0,05 А. Стрелка при этом отклоняется до половины шкалы.

При любом токе от 0 до 1 А (при выбранном шунте) токи в ветвях разделятся в отношении rа:rш, т. е. 100:1,01.

3. Амперметр (рис. 3) имеет внутреннее сопротивление rа=9,9 Ом, а сопротивление его шунта 0,1 Ом. В каком отношении разделится измеряемый ток 300 А в приборе и шунте?

Задачу решим при помощи первого закона Кирхгофа: I=Iа+Iш.

Из второго уравнения получим ток Iа и подставим его в первое уравнение:

Из всего измеряемого тока через амперметр пройдет ток Iа=3 А, а через шунт Iш=297 А.

4. Амперметр, внутреннее сопротивление которого 1,98 Ом, дает полное отклонение стрелки при токе 2 А. Необходимо измерить ток до 200 А. Какое сопротивление должен иметь шунт, подключаемый параллельно зажимам прибора?

В данной задаче диапазон измерений увеличивается в 100 раз: n=200/2=100.

В нашем случае сопротивление шунта будет: rш=1,98/(100-1)=1,98/99=0,02 Ом.

Амперметр на светодиодах своими руками (схема)

Цифровой амперметр на светодиодах – удобный способ отображения информации, при котором имеет значение не только модуль измеряемой величины (что, кстати, значительно удобнее определять не по отклонению стрелочного индикатора, а по величине столбчатой диаграммы, или при помощи мини-дисплея), но и частоту изменения этого параметра.

Описание схемы

Светодиоды не отличаются большой мощностью, но использовать их в слаботочных электрических цепях допустимо и целесообразно. В качестве примера можно рассмотреть схему получения цифрового амперметра для определения силы тока в аккумуляторной батарее автомобиля, при номинальном диапазоне значений в 40…60 мА.

Вариант внешнего вида амперметра на светодиодах в столбик

Количество использованных светодиодов определит пороговое значение тока, при котором в работу будет включаться один из светодиодов. В качестве операционного усилителя можно использовать LM3915, либо подходящий по параметрам микроконтроллер. На вход будет подаваться напряжение через любой низкоомный резистор.

Удобно отражать результаты измерения в виде столбчатой диаграммы, где весь, практически используемый диапазон тока будет разделяться на несколько сегментов по 5…10 мА. Плюсом LED является то, что в схеме можно использовать элементы разного цвета – красного, зелёного, синего и т.д.

Доработка амперметра переменного тока

Главная Радиолюбителю Измерительная техника

Электромагнитные амперметры Э8025, Э8030, Э8031 обычно рассчитаны на измерение переменного тока в несколько десятков ампер. Они неприхотливы в эксплуатации, долговечны, не требуют обслуживания, не нуждаются в источнике питания. Для обычного домашнего применения такие измерители малоэффективны, поскольку бытовые электроприборы нечасто по отдельности или даже суммарно потребляют ток более 10…15 А. Однако если необходимо часто измерять переменный ток в сети 50 Гц меньшей силы, то такие амперметры несложно сделать более чувствительными.

Доработке подвергся амперметр Э8030, изначально рассчитанный на измерение переменного тока 20…50 А.

Для этого амперметр разбирают и с металлического основания снимают каркас с катушкой. Последняя намотана многослойной медной лентой и состоит из трёх витков. Вместо неё наматывают новую обмотку, которая должна содержать 37 витков жгута из свитых вместе десяти отрезков провода ПЭВ-2 0,27 или другого аналогичного (рис. 1). С такой катушкой амперметр будет измерять переменный ток 2…5 А (это значение выбрано, чтобы не изготавливать новую шкалу, но может быть и другим). При установке катушки на металлический каркас прибора не забудьте установить овальный металлический регулировочный рычаг (рис. 2,внизу справа).

Рис. 2. Овальный металлический регулировочный рычаг

Для калибровки прибора удобно применить понижающий трансформатор с габаритной мощностью от 90 В·А и вторичной обмоткой на 12 В. К ней подключают последовательную цепь, составленную из калибруемого прибора, образцового амперметра переменного тока и нагрузки, в качестве которой могут быть использованы лампы накаливания, мощные постоянные резисторы или реостат. У переделываемого амперметра середина шкалы соответствует значению около 3 А. Установив в цепи такой ток, переводят регулировочный рычаг в среднее положение и, отматывая поштучно витки с катушки, подводят стрелку амперметра к отметке шкалы 3 А. Добившись этого и увеличив ток в цепи до 5 А, перемещением регулировочного рычага устанавливают стрелку на соответствующую отметку шкалы. Обе регулировки частично взаимозависимы, поэтому их придётся повторить несколько раз. Для перемещения регулировочного рычага следует использовать немагнитный инструмент.

Закончив калибровку, выводы катушки максимально укорачивают и припаивают к контактным винтам. Готовую катушку необходимо пропитать лаком ХВ-784 или аналогичным. Вид амперметра в сборе показан на рис. 3.

Такие измерители удобно применять для контроля работы различного оборудования в домашней мастерской, гараже. Например, можно вовремя отследить перегрузку в работе металло- и деревообрабатывающих станков.

Для переделки амперметров на больший ток число витков катушки пропорционально уменьшают, а суммарное сечение обмоточного провода увеличивают. Падение напряжения переменного тока на амперметре при переделке его на предел 5 А должно быть не более 0,3 В, т. е. рассеиваемая измерительной катушкой мощность не должна превышать 1,5 Вт. Иначе катушку следует перемотать проводом с большим сечением по меди. При эксплуатации таких и подобных амперметров следует учитывать, что они являются источником акустического шума, он тихий, но в ночное время в жилом помещении может быть заметен.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Шунт для амперметра своими руками

Многие домашние электрики недовольны тестерами промышленного производства, поэтому задумываются о том, как из амперметра сделать вольтметр, а также как повысить функциональность тестера промышленного производства. Для этой цели можно изготовить специальный шунт.

Перед тем как приступить к работе, следует выполнить расчет шунта для микроамперметра и найти материал, обладающий хорошей проводимостью.

Конечно, для большей точности измерений можно просто приобрести миллиамперметр, но такие приборы стоят довольно дорого, а применять их на практике приходится весьма редко.

В последнее время в продаже появились тестеры, рассчитанные на большое напряжение и сопротивление. Для них шунт не нужен, но и стоимость их очень высока. Для тех, кто использует классический тестер, изготовленный еще в советское время, или пользуется самодельным, шунт просто необходим.

Недостатки промышленного амперметра

Подобрать токовый амперметр — дело непростое. Большинство приборов выпускается на Западе, в Китае или в странах СНГ, и в каждой стране к ним предъявляют свои индивидуальные требования.

Также в каждой стране свои допустимые величины постоянного и переменного тока, требования к розеткам.

В связи с этим при подключении амперметра западного производства к отечественному оборудованию может оказаться, что прибор не может правильно измерить силу тока, напряжение и сопротивление.

С одной стороны, такие устройства очень удобны. Они компактны, снабжаются зарядным устройством и просты в пользовании.

Классический стрелочный амперметр не занимает много места и имеет визуально понятный интерфейс, но он часто не рассчитан на существующее напряжение сопротивление. Как говорят бывалые электрики, на шкале «не хватает ампер».

Приборы, устроенные таким образом, обязательно нуждаются в шунтировании. Например, бывают ситуации, когда нужно измерить величину до 10а, а на шкале прибора отсутствует цифра 10.

Вот основные недостатки классического фабричного амперметра без шунта:

  • Большая погрешность в измерениях,
  • Диапазон измеряемых величин не соответствует современным электроприборам,
  • Крупная калибровка не позволяет измерять малые величины,
  • При попытке измерить большую величину сопротивления прибор «зашкаливает».

Для чего нужен шунт

Шунт необходим для того, чтобы правильно измерить сопротивление в тех случаях, если амперметр не предназначен для измерения таких величин. Если домашний мастер часто имеет дело с такими величинами, есть смысл изготовить шунт для амперметра своими руками.

Шунтирование значительно повышает точность и эффективность его работы. Это важное и нужное устройство для тех, кто часто пользуется тестером. Обычно его используют владельцы классического амперметра 91с16.

Вот основные преимущества самодельного шунта:

  • Позволяет измерить сопротивление там, где у фабричного или самодельного амперметра не хватает делений на шкале,
  • Помогает адаптировать зарубежные амперметры к российским электрическим цепям,
  • Точность тестера значительно увеличивается,
  • Защищает тестер от поломок и продлевает срок его службы. Любая ситуация, когда тестер «зашкаливает» является стрессом для прибора. Если амперметр «зашкаливает» часто (обычно так бывает, если он отсутствует), прибор быстро выходит из строя, а починить его непросто (легче купить новый).

Порядок изготовления

С самостоятельным изготовлением шунта легко справится даже первокурсник профессионально-технического училища или начинающий электрик-любитель.

Если подключить это устройство соответствующим образом, оно значительно увеличит точность амперметра и прослужит долго. В первую очередь необходимо произвести расчет шунта для амперметра постоянного тока.

Узнать о том, как производить расчеты, можно через интернет или из специализированной литературы, адресованной домашним электрикам. Рассчитать шунт можно с помощью калькулятора.

Для этого нужно просто подставить конкретные значения в готовую формулу.

Для того чтобы воспользоваться схемой расчета, необходимо знать реальные напряжение и сопротивление, на которые рассчитан конкретный тестер, а также представлять себе тот диапазон, до которого нужно расширить возможности тестера (это зависит от того, с какими именно приборами чаще всего приходится иметь дело домашнему электрику).

Для изготовления прекрасно подойдуттакие материалы:

Китайский вольтметр амперметр с пятью проводами Китайский вольтметр амперметр с АлиЭкспресс Схема подключения вольтметра и амперметра со встроенным шунтом к блоку питания Фото деталей для расчёта шунта контрольный прибор для настройки шунта замена переменного резистора шунта на постоянный Схема подключения вольтметра амперметра к регулируемому блоку питания Схема подключения вольтметра амперметра к регулируемому блоку питания Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Как подобрать шунт для амперметра

Как сделать простой вольтметр своими руками – схемы и рекомендации

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор.

Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор.

Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление.

Читать также:  Как сделать пирамиду из бумаги. Схема с размерами, пошаговая инструкция с фото

То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей.

Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт.

Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением.

Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом,
  • Uп – это максимальное напряжение измеряемого предела,
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт,
  • напряжение проходит через амперметр к правому зажиму,
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3.

Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5.

Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

Как сделать амперметр из вольтметра Спорт видео

есть желание поддержать канал? в описании канала есть реквизиты. заработать на ЮТУБ https://join.air.io/ua3usy.

Переделка стрелочного вольтметра на 50 В в амперметр на 5 А. Предыдущее видео «Переделка стрелочного амперме…

Рассмотрен пример, как переделать вольтметр в амперметр, рассчитан шунт для амперметра.

Всем привет, дорогие друзья! Недавно у меня вышел из строя мультиметр , а именно он не правильно показывает…

Бешеные скидки на Черной пятнице BLACKFRIDAY 2018 https://ali.ski/vmo1b9 Цифровой вольтметр с AliExpress,переделка в амперметр….

ВНИМАНИЕ! Учитывайте, что напряжение измеряется ДО шунта. Учитывайте мощность резистора. Т.е. если 5А тока,…

Переделка стрелочного вольтметра в амперметр: https://www.youtube.com/watch?v=DzEjj… Переделка и тестирование амперметра…

Переделать стрелочный вольтметр в амперметр можно буквально за пару минут.

Схема переделки вольтметра: https://yadi.sk/i/VHm2OBlw3KawTY В этом видео я поясняю как улучшить точность показания двух…

Видео о том, как сделать шунт для амперметра на нужный вам ток.Расчет шунта для амперметра без всяких формул…

Переделка Китайского вольтметра за 1 доллар в ампервольтметр Часть 2 https://www.youtube.com/watch?v=x3XO3dB74CA&feature=youtu.be -…

Специально купил несколько вольтметров для опытов, которые не очень то значимые, но их результаты нескольк…

Переделка Китайского вольтметра за 1 доллар в ампервольтметр Часть 1 https://www.youtube.com/watch?v=Jd5avK_f65g&feature=youtu.be -…

Разбираем стрелочный вольтметр производства СССР, смотрим как светится шкала в темноте, а так же информаци…

Вольтметр и амперметр. Как просто и быстро настроить стрелочные амперметр и вольтметр постоянного тока…

В этом выпуске вы узнаете: как работают электроизмерительные приборы, как устроены магнитоэлектрические…

Бескорпусные вольтметры довольно удобны, но ограничение собственного напряжения питания делает его не…

китайский вольтметр переделка вольтметра в термометр. подробная инструкция новичкам, как сделать термомте…

По просьбе зрителя, делаю обзор о том. как подключить амперметр и вольтметр к самодельному зарядному устрой…

После тестирования и настройки Китайского электронного модуля амперметра и вольтметра, я решил его помест…

Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.

Как рассчитать шунт для амперметра?

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома для участка электрической цепи? Вот, собственно и он:

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ,-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ,-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ,-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.

Работа шунта на практике

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ,-).

Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс

Схемы самодельных цифровых вольтметра и амперметра (СА3162, КР514ИД2)
Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, — вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Схемы амперметров с линейной шкалой для измерения переменного тока

Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах .

Амперметр для печатных токопроводящих дорожек

Измерение тока дает возможность тестирования отдельных проводников печатной платы без их разделения. У пробника амперметра имеется 4 выступающих провода, которыми касаются измеряемой токопроводящей дорожки. В схеме можно использовать операционный усилитель типа 741, но более дорогой 725С дает.

Амперметр своими руками

Привет всем любителям самоделок. В данной статье я расскажу, как сделать амперметр своими руками, в сборке которой поможет кит-набор, ссылка на него будет в конце статьи. Данный амперметр пригодится для различных самоделок, где нужно контролировать ампераж. Корпус радиоконструктора выполнен специально с защелками для установки на щиток или панель, что является несомненным плюсом.

Перед прочтением статьи предлагаю посмотреть видеоролик с подробным процессом сборки и проверкой в работе кит-набора.

Для того, чтобы сделать амперметр своими руками, понадобится:

* Кит-набор * Паяльник, флюс, припой * Мультиметр * Приспособление для пайки «третья рука» * Крестовая отвертка * Бокорезы

Весь монтаж будет производиться на печатной плате, на которой нанесена маркировка всех компонентов, так что в данном случае инструкция не нужна, само качество изготовления платы на высоком уровне, также она имеет металлизированные отверстия.

Разобравшись с комплектом кит-набора, переходим непосредственно к сборке.

Первым делом на плату устанавливаем резисторы. Для установки резисторов необходимо измерить их номиналы, сделать это можно при помощи мультиметра, цветовой маркировки с справочной таблицей или онлайн-калькулятора. Определив сопротивление каждого резистора, устанавливаем их на свои места, согласно маркировке на плате, с обратной стороны загинаем выводы, чтобы при пайке детали не выпали.

После установки резисторов переходим к конденсаторам, устанавливаем полярные и неполярные конденсаторы, полярные ставим с соблюдением полярности, плюс это длинная ножка, минус-короткая, также минус на плате обозначен заштрихованным полукругом.

Керамические неполярные конденсаторы вставляем согласно цифровой маркировке на их корпусе и на самой плате. Далее вставляем диоды, на плате один их них выделен жирной полоской, которая также нанесена черным на корпусе диода, остальные три все одинаковые и перепутать их не получится, а затем ставим индуктивность.

Вот и готов кит-набор, теперь его можно проверить в действии.

Чтобы проверить данный радиоконструктор необходимо подсоединить провода к питанию, для этого будет достаточно аккумуляторной батареи типа 18650, а тестируемое устройство подсоединяем в разрыв к входу прибора.

Подключать можно различные устройства для проверки потребления тока, чтобы откалибровать измерения имеется подстроечный резистор. Данный кит-набор пригодится для тех, кто хочет сделать что-то электронное, где необходим вывод информации в реальном времени, например, потребление тока электродвигателя. Также данная сборка будет полезна начинающим радиолюбителям, которые хотят попробовать себя в радиоэлектронике.

На этом у меня все, всем спасибо за внимание и творческих успехов.

Амперметр переменного тока

Амперметром постоянного тока называют прибор, который показывает силу тока в цепи. Показатель измеряется в амперах. Из этих данных можно узнать о магнитодвижущей силе, понять электрический потенциал. Изобретателем устройства является И. Швейгер, университетский профессор из Галле. Произошло это еще в XIX веке. И тогда прибор носил название «токовый гальванометр».


Амперметр переменного тока

Модель DigiTOP

Этот цифровой вольтметр-амперметр постоянного тока выпускается с опорными диодами. Счетчик в нем предусмотрен двухразрядного типа. Проводимость компаратора находится на отметке в 3.5 мк. Микроконтроллер применяется с выпрямителем. Чувствительность тока у него довольно высокая. Источником питания выступает обычная батарейка.

амперметр цифровой

Резисторы используются в приборе коммутируемого типа. Стабилизатор в данном случае не предусмотрен. Триод установлен только один. Непосредственно преобразование тока происходит довольно быстро. Для бытового использования этот прибор подходит хорошо. Фильтры для увеличения точности измерения предусмотрены.

Если говорить про параметры вольтметра–амперметра, то важно отметить, что рабочее напряжение находится на уровне 12 В. Потребление тока в данном случае равняется 0.5 А. Минимальное разрешение представленного прибора составляет 1 мА. Сопротивление шунта располагается на отметке в 2 Ом.

Коэффициент деления вольтметра-амперметра только 0.7. Максимальное разрешение указанной модели составляет 15 мА. Непосредственно процесс преобразования тока занимает не более 340 мс. Допустимая ошибка указанного прибора располагается на уровне в 0.1 %. Минимальное давление система выдерживает в 12 кПа.

Устройство мультиметра

Современный мультиметр (тестер) представляет собой сложное электронное устройство. Эти измерительные приборы отличаются принципом работы и способом отображения полученных результатов. При этом их устройство и внешний вид целиком и полностью зависят от производителя, имеющего возможность оснастить мультиметры дополнительными возможностями. Например, имеются тестеры, оборудованные встроенными токопроводящими клещами, которые позволяют измерять электрические параметры цепей не разрывая проводов.

Классификация и принцип действия

По конструктивному исполнению мультиметры могут быть стационарными и малогабаритными. Кроме того, исходя из схемотехнического решения они могут быть:

Стационарные мультиметры работают, как правило, от сети централизованного электропитания. Они представляют собой высокоточные электронные устройства и используются для прецизионных измерений в лабораторных или производственных условиях. Работают также в составе информационно-измерительных систем и специализированных промышленных комплексов. В малогабаритных (карманных) тестерах для измерения сопротивления используются встроенные аккумуляторы или сменные элементы электропитания.

В аналоговых мультиметрах результат измерения отображается отклонением стрелки на градуированной шкале, а в цифровых – на светодиодном табло или жидкокристаллическом экране. Могут встретиться и оригинальные модели, оснащенные одновременно стрелочным индикатором и цифровым экраном.

Электрическая схема стрелочных мультиметров аналогового типа отличается простотой и представляет собой набор шунтирующих прецизионных резисторов большого и малого номинала. Чтобы с помощью таких тестеров можно было измерять параметры электрических цепей переменного тока, в схему вводят выпрямительные диоды. Это связано с тем, что магнитоэлектрическая система стрелочного микроамперметра работает только на постоянном токе.

Электрические схемы цифровых мультиметров значительно сложнее и содержат в своем составе такие узлы:

  • операционный усилитель,
  • аттенюатор,
  • аналогово-цифровой преобразователь,
  • высокоточный выпрямитель,
  • механический или электронный коммутатор.

Блок-схема является базовой для всех цифровых мультиметров и позволяет осуществлять измерение параметров электрических цепей постоянного и переменного тока с высокой точностью.

Принцип действия аналоговых тестеров основан на том, что измерению предшествует преобразование всех входящих сигналов в силу тока, которая затем и измеряется. В отличие от них цифровые мультиметры все входящие сигналы предварительно преобразуют в напряжение.

Виды устройства и принцип работы

Для определения значения тока в электрической цепи, применяют специальные приборы – амперметры. Амперметр включается последовательно в исследуемую цепь, и, в силу крайне малого собственного внутреннего сопротивления, данный измерительный прибор не вносит сколь-нибудь существенных изменений в электрические параметры цепи.

Будет интересно? Как подключить амперметр к цепи переменного или постоянного тока

Шкала прибора градуирована в амперах, килоамперах, миллиамперах или микроамперах. Для расширений пределов измерений, амперметр может быть включен в цепь через трансформатор или параллельно шунту, когда лишь малая доля измеряемого тока проходит через прибор, а основной ток цепи течет через шунт.

Сегодня есть два особо популярных типа амперметров – механические амперметры — магнитоэлектрические и электродинамические, и электронные — линейные и трансформаторные.

В классическом магнитоэлектрическом амперметре со стрелкой и градуированной шкалой, через подвижную катушку прибора проходит определенная часть измеряемого тока, обратнопропорциональная сопротивлению катушки, включенной параллельно калиброванному шунту малого сопротивления.

Ток (прямой или выпрямленный) проходящий через катушку приводит к повороту стрелки магнитоэлектрического амперметра, и угол наклона стрелки оказывается пропорционален величине измеряемого тока. Ток через катушку амперметра создает на ней крутящий момент благодаря взаимодействию собственного магнитного поля с магнитным полем установленного стационарно постоянного магнита. И поскольку стрелка соединена с катушкой-рамкой, она наклоняется на соответствующий угол и указывает значение тока на шкале.

Электродинамический амперметр устроен несколько более сложным образом. В нем есть две катушки — одна неподвижная, а вторая — подвижная. Катушки соединены между собой последовательно или параллельно. Когда токи проходят через катушки, то их магнитные поля взаимодействуют, в итоге подвижная катушка, с которой соединена стрелка, отклоняется на угол, пропорциональный величине измеряемого тока.

В приборах, предназначенных для измерения значительных токов, основной ток всегда проходит через шунт малого сопротивления, а катушка соединенная со стрелкой, принимает на себя только малую долю тока, выступая в роли проводящего ответвления от основного пути тока. Соотношения токов через измерительную рамку и через шунт обычно принимаются такими: 1 к 1000, 1 к 100 или 1 к 10.

Магнитоэлектрические амперметры

Принцип действия такого вида прибора основывается на взаимодействии магнитного поля магнита и подвижной катушки, находящейся в корпусе прибора. Достоинствами такого амперметра является низкое потребление электроэнергии при функционировании, высокая чувствительность и точность измерений. Все магнитоэлектрические амперметры оснащены равномерной градуировкой шкалы измерений. Это позволяет произвести измерения с высокой точностью.

К недостаткам магнитоэлектрического амперметра относится его сложность внутренней конструкции, наличие движущейся катушки. Такой прибор не является универсальным, так как он действует только для постоянного тока. Несмотря на недостатки, магнитоэлектрический вид прибора широко применяется в различных областях промышленности, в лабораторных условиях.

Электромагнитные устройства

Амперметры с электромагнитным принципом работы не имеют в своем устройстве движущейся катушки, в отличие от магнитоэлектрических моделей. Устройство их значительно проще. В корпусе находится специальное устройство и один или несколько сердечников, которые установлены на оси. Электромагнитный амперметр имеет меньшую чувствительность, по сравнению с магнитоэлектрическим прибором. А значит, точность его измерений будет ниже. Преимуществами таких приборов является универсальность работы. Это означает, что они могут измерять силу тока как в цепи постоянного, так и переменного тока. Это значительно расширяет его сферу применения.


Электромагнитные амперметры

Электродинамические приборы

Метод работы таких приборов заключается во взаимодействии электрических полей токов, которые проходят по электромагнитным катушкам. Конструкция прибора состоит из подвижной и неподвижной катушки. Универсальная работа на любом виде тока является основным достоинством электродинамических амперметров. Из недостатков стоит выделить большую чувствительность, так как они реагируют даже на незначительные магнитные поля, расположенные в непосредственной близости к ним. Подобные поля способны создавать для электродинамических приборов большие помехи, поэтому такие амперметры применяют только в защищенном экраном месте.

Будет интересно? Устройство амперметра и принцип его действия

Ферродинамические приборы

Такие приборы, обладают наибольшей эффективностью и точностью измерений. Магнитные поля, расположенные рядом с прибором, не оказывают на него заметного влияния, поэтому нет необходимости в установке дополнительных защитных экранов.

Конструкция такого амперметра включает в себя замкнутый ферримагнитный провод, а также сердечник и неподвижную катушку. Такое устройство позволяет повысить надежность работы прибора. Поэтому ферродинамические виды амперметров чаще всего используются в военной промышленности и оборонных учреждениях. К его преимуществам также можно отнести удобство и простоту пользования, точность всех измерений, по сравнению с ранее рассмотренными видами приборов.

Цифровые устройства

Кроме рассмотренных приборов, существует цифровой вид амперметров. В настоящее время они все шире используются в различных сферах производства, а также в бытовых условиях. Такая популярность цифровых приборов связана с удобством пользования, небольшими размерами и точными измерениями. Вес прибора также очень незначительный. Цифровые модификации используют в различных условиях, он невосприимчив к вибрациям, в отличие от механических аналоговых приборов.

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.


Дольные единицы

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Читать также:  Как сделать костюм Мухи-Цокотухи своими руками

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике. Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты. Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр.

Амперметр – типы

В зависимости от конструкции различают следующие амперметры:

Классификация по способу вывода информации:

Если оценивать рынок, предлагается большое количество электродинамических амперметров. Измерители изготавливаются с катушками, имеется ряд особенностей:

Устройства востребованы в лабораториях, частных предприятиях. Они функционируют при частоте максимум до 200 Гц. К слабым сторонам стоит отнести повышенную чувствительность к перегрузкам. Если взглянуть на схему электродинамического амперметра, учитывается использование проводных конденсаторов.

Преобладают рабочие резисторы повышенной проводимости. Если есть потребность в приобретении, стоит обратить внимание на измеряемые величины. Также в расчет берется показатель сопротивления. При подключении амперметра в цепи определяется воздействие силы тока от 1 ампера. Эксперты полагают, что электродинамические приборы обеспечивают наиболее высокую точность.

Класс оборудования должен указываться производителем. Также встречаются модели с экранированным, статическим построением компонентов. Если взглянуть на панель, может встречаться различное разделение по амперам.

Важно! Ферродинамический прибор поставляется с подвижными и неподвижными катушками.

  • частотная погрешность,
  • четкая позиция сердечника,
  • широкий температурный диапазон,
  • проблема с намагничиванием,
  • подходит для щитовых установок.

Электрики выбирают их за счет высокого класса надежности. Амперметры данного типа являются компактными. Они способны использоваться на плоской поверхности или монтироваться на рейку. Конфигурация предоставляется с поворотными механизмами либо рядом подшипников. За основу используется пластик, есть варианты с металлической защитой.

Принципы работы

Принцип работы зависит от типа модификации, а для этого стоит рассмотреть устройство амперметра постоянного тока.


Работа прибора

Если рассматривать магнитоэлектрические модели, они включают следующие элементы:

Вам это будет интересно Проверка микросхемы на исправность

Принцип работы механических модификаций построен на полярности подключения к цепи. На стрелку оказывается воздействие магнитного поля. Направление грузика зависит от амплитуды импульсов. При возрастании электричества стрелка отклоняется в левую сторону.

Принцип работы цифрового прибора

Цифровой амперметр постоянного тока позволяет измерить и определить постоянный ток – как отрицательной, так и положительной полярности. На направление тока указывает точка, размещенная в крайнем правом разряде. Удобство применения данного устройства состоит в отсутствии необходимости подключения шунта. Амперметр цифровой постоянного тока может монтировать в источники питания, стойки приборов, стенды, зарядные устройства и прочее. Такой прибор советуют использовать, чтобы контролировать работу двигателей, DС-DС преобразователей, источников питания и инверторов.

Будет интересно? Как подключить амперметр к цепи переменного или постоянного тока

Амперметр постоянного тока цифровой включается спустя три минуты после подключения питания. В случае установки в зарядное устройство рекомендуется предварительно к выводам питания амперметра подключить конденсатор 470 mF 25 v. Индикатор не отображает незначащие нули. Учитывая обширный выбор диапазонов, амперметр с успехом функционирует в одном из двадцати вариантов режима работы. При этом каждый режим предполагает применение одного из трех шунтов: на мкА, мА или Амперы.

Предел измерения колеблется в диапазоне 1мкА – 1000А. Для работы следует выбрать один из 60 предложенных пределов измерений.

Как уже было отмечено, каждый режим работает на основе подходящего шунта. Следует помнить, что номинальное напряжение любого шунта не должно превышать 75мВ. В качестве примера можно рассмотреть режим 2, который работает только с шунтами 5мкА, 5мА или 5А. Для программирования режимов применяется пять джамперов.

Перед включением модуля рекомендуется запрограммировать режим его работы. После включения модуль выдаст сведения относительно выбранного режима работы. Если, допустим, выбран режим измерения токов в пределах 25А, то включенный модуль будет мигать несколько раз «25.0», что указывает на режим работы «5». В таком случае необходимо использование одного из шунтов: 25А, 25мкА или 25мА. При выборе недопустимого режима будет мигать значок «Err», указывающий на ошибку.

Следует помнить, что измерять можно только в одной полярности, если же ток измеряется в обратной полярности, то это будет отображаться, как «000». Для питания модуля предназначен встроенный литиевый аккумулятор CR2032, рассчитанный на двадцать дней бесперебойной работы. К тому же, источником питания может послужить внешняя батарея и любой другой источник с постоянным током 3В. Особенности подключения состоят в том, что внешний источник питания 3В следует подключить плюсом к контакту «3V», а минусом – к «0V».

Еще одним обязательным условием является наличие гальванической развязки для внешнего источника питания от источника, который измеряет ток. Важно не забыть встроенный литиевый элемент при использовании внешнего источника питания. Чтобы сэкономить батарею, измеряя ток в автомобиле, можно воспользоваться реле, которое отключает питание модуля во время выключения зажигания. Сделанные самостоятельно шунты или резисторы можно использовать для малых токов. При этом рекомендуется применять металлопленочные резисторы, которые в меньшей степени зависят от температурного режима. Как правило, в устройстве используют константановую или манганиновую проволоку.

Интересно почитать: что такое клистроны.

Схемы подключения

Независимо от конструкции подсоединение прибора в сеть производится исключительно последовательно, что показывает схема подключения амперметра изображенная ниже. Подключение параллельно равносильно короткому замыканию, так как внутреннее сопротивление прибора очень мало. Правильность подключения прибора обеспечивает его сохранность и отсутствие повреждений в электросхеме.

Перед тем как подключить амперметр важно учесть:

  • постоянный или переменный ток в сети,
  • соблюдается ли полярность прибора,
  • стрелка амперметра должна находиться за серединой шкалы,
  • предел измерения больше максимально возможного скачка тока в электросхеме,
  • окружающая среда соответствует рекомендуемым параметрам,
  • измерительное место находится без воздействия вибрации.

Для измерения больших токов используются шунты. Амперметр подключается к выводам резистора параллельно. Результаты измерений подлежат дальнейшей обработке для вычисления силы тока протекающей в цепи.

Для гальванического разделения силовой и контрольной цепи используют измерительные трансформаторы тока. Амперметр подключается к специальным выводам. Используется такая схема для измерения токов, превышающих предел измерений прибора.

Производить измерения на цифровом амперметре гораздо проще. на него не воздействуют вибрация, правильное положение и магнитные поля. Не столь критично отреагирует прибор и на неправильно выбранную полярность. Превышать предел измерений не рекомендуется, так как можно повредить устройство. Большинство высокотоковых выходов мультиметров не имеют защиты плавким предохранителем.

Шкала и схема амперметра переменного тока

На схеме видны элементы, отвечающие за уровень напряжения. Распространенными считаются варианты с последовательным подключением резисторов. Максимальное падение напряжения происходит на обмотке.


Схема элемента

Интересно! Диоды используются кремниевого типа, они отвечают за стабильность показаний.

Также на схеме показана дополнительная обмотка изоляции. За катушкой трансформатора идут конденсаторы. Кремниевый диод служит для защиты показаний. В сложных схемах амперметр используется с выпрямителями.

Выше описано понятие прибора переменного тока. Рассказана сфера применения, особенности устройств. Показан принцип работы и преимущества конкретных приборов.

Устройство фазочувствительных модификаций

Фазочувствительные модели продаются на 10 и 12 В. Параметр допустимой ошибки у моделей колеблется в районе 0.2%. Счетчики в устройствах применяются только двухразрядного типа. Микроконтроллеры используются с выпрямителями. Повышенной влажности амперметры данного типа не боятся. У некоторых модификаций имеются усилители. Если заниматься сборкой устройства, то потребуются коммутируемые резисторы. Источником стабильного тока может выступать обычная литий-ионная батарейка. Диод в данном случае не нужен.

Перед установкой микроконтроллера важно припаять фильтр. Преобразователь для литий-ионной потребуется переменного типа. Показатель чувствительности у него находится на уровне 4.5 мк. При резком падении напряжения в цепи необходимо проверить резисторы. Коэффициент деления в данном случае зависит от пропускной способности компаратора. Минимальное давление приборов данного типа не превышает 45 кПа. Непосредственно процесс преобразования тока занимает около 230 мс. Скорость передачи тактового сигнала зависит от качества счетчика.

цифровой амперметр своими руками

Разновидности амперметров

Принято делить их на 3 главных типа конструкций:

Стрелочные приборы распространены больше остальных, потому что они отличаются большой надежностью и простотой. Для измерения силы переменного тока могут применять индукционные, детекторные и прочие амперметры, кроме магнитоэлектрических устройств (рассчитанных на постоянный ток). Иногда встречается оснащение аппаратов со стрелочной головкой специальными электронными контурами, которые усиливают передающийся сигнал.

Также электроника позволяет исключать перегрузки, отсеивать посторонние шумы и наводки. За последние годы доля цифровых амперметров заметно выросла, но они все еще остаются «на вторых ролях».

Сама цифровая индикация может быть выполнена на базе как жидких кристаллов, так и светодиодов. Если говорить о стрелочных приборах, то разница между ними касается того, как именно создается вращение стрелки. В электромагнитных аппаратах оно возникает в результате механического действия тока в промежутке между катушкой и движущимся сердечником из ферромагнитного материала. К сердечнику и крепится стрелка. Задание угла поворота происходит, когда становятся равными вращающий момент и сопротивление рабочей пружины.

Отдельного внимания заслуживают щитовые амперметры. По принципу работы они почти не отличаются от других типов. Вместо отдельной «коробочки» используется целый «щит», обеспечивающий стабильность положения прибора. Именно такие устройства востребованы:

  • в производственных цехах,
  • в лабораториях промышленных предприятий,
  • в учебных заведениях,
  • на генерирующих и распределяющих ток объектах,
  • в бортовой аппаратуре транспортных средств,
  • в автоматизированных комплексах,
  • в трансформаторных подстанциях.

Бесконтактное измерение тока

Для осуществления измерения силы тока без разрыва схемы существует специальный вид электрических амперметров под названием токовые клещи. Принцип действия основан на измерении магнитного поля, образующегося вокруг проводника с током. Данный эффект проявляется на переменном напряжении.

Показания амперметра имеют меньшую точность по сравнению с приборами, подключаемыми последовательно. При лабораторных измерения данный способ не используется, но в бытовых целях такой вид измерений достаточно удобен. Безопасность и простота работы с токовыми клещами намного выше, чем при использовании аналоговых приборов.

Схемы амперметров с линейной шкалой для измерения переменного тока

Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах.

Шкала амперметра переменного тока, построенного с использованием магнитоэлектрического стрелочного прибора с шунтом и простого выпрямителя, обычно нелинейна. Это связано с тем что при уменьшении напряжения ниже некоторого порога (0,2. 0,6 В) выпрямительные свойства германиевых и кремниевых диодов резко ухудшаются.

В результате требуется увеличивать падение напряжения на шунте либо применять линейные выпрямители на основе усилителей переменного напряжения. Однако повышение падения напряжения на шунте неизбежно приводит к потерям мощности и росту выходного сопротивления источника питания. К тому же этот способ лишь уменьшает нелинейность, но не устраняет ее полностью.

Устройство Торех

Указанный амперметр (цифровой) производится с повышенной проводимостью тока. Максимальное давление устройство выдерживает в 80 кПа. Минимальная допустимая температура амперметра равняется -10 градусов. Повышенной влажности указанный измерительный прибор не боится. Устанавливать его рекомендуется рядом с источником тока. Коэффициент деления равняется только 0.8. Максимальное давление амперметр (цифровой) выдерживает в 12 кПа. Потребляемый ток устройства составляет около 0.6 А. Триод используется фазового типа. Для бытового использования данная модификация подходит.

Однополупериодный синхронный выпрямитель для амперметра

На рис 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2 подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты.

В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной.

Схема амперметра с трасформатором

Рис. 1. Схема амперметра с трасформатором.

При использовании микроампер метров со шкалой 50 .200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5. 2 В для германиевых и 2. 2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра).

Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов Минимальный ток диодов должен в 10.. 20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать.

Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счет тока диода VD2, протекающего через шунт, и разброса параметров диодов.

Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4 ..5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания

Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220 КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы.

Двухполупериодный выпрямитель для амперметра

Добавлением еще двух диодов и одного резистора синхронный выпрямитель можно преобразовать в двухполупериодный (рис 2). В качестве источника, открывающего диоды, здесь использована рабочая обмотка трансформатора

Преимущество двухполупериодной схемы выпрямления перед однополупериодной состоит в том, что требуемое падение напряжения на Вш примерно в два раза меньше при одинаковом токе полного отклонения микроамперметра.

Схема двухполупериодного выпрямителя для амперметра

Рис. 2. Схема двухполупериодного выпрямителя для амперметра.

Так, если в однополупериодном выпрямителе с диодами Д220 для полного отклонения стрелки микроамперметра на 200 мкА (с сопротивлением рамки около 670 Ом) требовалось падение напряжения на Rш, около 0,4 В, то в двухполупериодном это напряжение не превышало 0,2 В.

Приведенная схема является модификацией обычного кольцевого модулятора При увеличении напряжения на R„, до 0,4 В (амплитудное значение) для германиевых и 1,2 В для кремниевых диодов через диоды VD1 VD3 и VD2, VD4 начинает протекать сквозной ток нагрузки. Поэтому резисторы R3-R5 служат не только для балансировки моста Они ограничивают ток через диоды при перегрузке.

Исходя из этих соображений, в двухполупериодном выпрямителе лучше использовать кремниевые диоды и рассчитывать амперметр на максимальное падение напряжения на Rш, не более 0,5. 0,6 В.

На случаи перегрузки или КЗ можно принять дополнительные меры по ограничению тока через диоды. Это может быть увеличение сопротивления резисторов R3- R5, гасящего резистора и шунтирующих диодов или стабилитронов.

Универсальные приборы измерений

Универсальные приборы измерений подходят больше для бытового использования. Компараторы в устройствах часто устанавливаются не большой чувствительности. Таким образом, допустимая ошибка лежит в районе 0.5%. Счетчики используются трехразрядного типа. Резисторы применяются на базе конденсаторов. Триоды встречаются как фазового, так и импульсного типа.

Максимальное разрешение приборов не превышает 12 мА. Сопротивления шунта, как правило, лежит в районе 3 Ом. Допустимая влажность для устройств составляет 7 %. Предельное давление в данном случае зависит от установленной системы защиты.

схема цифрового амперметра

Получение открывающего напряжения непосредственно от сети 220 В

Для открывания диодов измерительного моста амперметра с линейной шкалой не обязательно использовать трансформатор. На рисунке 3 показан способ получения открывающего напряжения непосредственно от сети 220 В, стабилитрон VD1 ограничивает и стабилизирует это напряжение. Диод VD2 уменьшает нагрев гасящего резистора R5.

Рис. 3. Схема — способ получения открывающего напряжения непосредственно от сети 220 В.

Такую схему питания целесообразно использовать и в случае питания от трансформатора, если его выходное напряжение превышает несколько десятков вольт При использовании в подобном случае двухполупериодного выпрямителя диод VD2 необходимо исключить, а последовательно со стабилитроном VD1 включить встречно еще один (того же типа) или использовать двуханодный стабилитрон

При расчете элементов однополупериодного выпрямителя и проведении измерений нужно помнить об особенностях измерения несинусоидального тока или напряжения, учитывая коэффициент формы.

При изготовлении многопредельного амперметра с пределами измеряемого тока менее 0 2 0 4 А необходимо учитывать следующую особенность этих мостовых схем. Ток, открывающий диод VD1 на рис 1 (или VD1, VD2 на рис 2), замыкается непосредственно на источник питания, а ток диода VD2 (или VD3 VD4 на рис. 2) проходит через резистор Rш, и создает на нем падение напряжения, которое, как указывалось выше, компенсируется подстройкой резистора R4

Когда сопротивление резистора Rш не более 0,1. 0 20м, падение напряжения на нем от тока диода VD2 (1 . 2 мА) не превышает 0,1 .0,4 мВ. При максимальном падении напряжения на шунте 100 ..200 мВ его можно не учитывать. Если же на минимальном пределе измерения сопротивление имеет большее значение, то необходимо принимать меры по поддержанию нуля при переключении пределов измерения.

Если питание моста производится от дополнительной обмотки то на минимальном пределе можно составить шунт из двух половин и подключить вывод обмотки питания моста к средней точке шунта Возможно также использовать дополнительную секцию безразрывного переключателя, чтобы при переключении пределов ток в цепи питания отдельных плеч измерительного моста не прерывался.

Амперметр для самодельного блока питания.

Для того чтобы изготовить шунт, надо рассчитать его сопротивление. Заходим на страницу «Карта сайта», выбираем категорию «Программы», заходим в заметку «Программы» и скачиваем «Программу для работ с проволокой». Так, программа есть. Теперь берем измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Эти параметры называются чувствительностью измерительной головки. Произведем расчет для головки с током в 50 микроампер. Зададимся измеряемым током, допустим 10А.

1) Замеряем сопротивление прибора (головки), для моей оно равно 1454 Ома. 2) В формулу 1 подставляем все имеющиеся данные: Ток прибора — Iприбора=0, 00005А, Ток измеряемый — Iизмеряемый=10А. Сопротивление прибора Rприбора= 1454 Ома. 3) Определили сопротивление шунта Rш=0,00727 Ом.

Скриншот_1

Открываем программу. Нажимаем вверху на вторую клавишу для определения длины шунта. Справа из выпадающего списка выбираем материал для шунта. Я для таких амперметров в качестве материала всегда использую светлую луженую жесть от консервных банок из-под сгущенного молока. И так, выбираем сталь. Ее удельное сопротивление примерно в 10 раз больше чем у меди, поэтому геометрические размеры шунта будут меньше. Замеряем микрометром толщину жестянки, у моей она равна 0,2мм. Выбираем ширину полоски жести, девяти миллиметров для тока в десять ампер я думаю хватит, тем более, что плоский проводник имеет большую площадь охлаждения.

Фото_1

Если будет уж очень сильно греться, то ширину можно увеличить и пересчитать шунт. Определяем площадь сечения нашего шунта S=0,2?9=1,8 квадратных мм. Выбираем величину ввода — «площадь поперечного сечения». Вводим это значение в соответствующее окно. Вводим величину необходимого сопротивления шунта. Нажимаем на «Результат» и получаем длину проводника равной 74 миллиметрам. Берем банку 1 (Фото 1) и вырезаем из ее жести соответствующую полоску. На фото я показал, какие формы можно придавать шунту. Под номером 4 шунт для печатного монтажа, концы полоски припаиваются к печатным площадкам. Вообще я всегда немного увеличиваю длину таких шунтов, что ведет к увеличению их сопротивления и в следствии с этим увеличению падения напряжения на на данном шунте при одном и том же токе. Зато появляется возможность точно отрегулировать показания амперметра с помощью добавочного резистора, включенного последовательно с измерительной головкой. См. фото2.

Конечно, в качестве шунтирующего резистора можно использовать и медный обмоточный провод, но тогда шунт будет очень длинным. Хотя давайте попробуем. Вводим новые данные в соответствующие окна. Смотрим следующий скиншот_2. Получаем шунт в виде проволоки длиной 51см. Не стоит сматывать проволоку в катушку и концентрировать тепло в одном месте. Просто проденьте этот кусок проволоки во

Скриншот_2

фторопластовую трубочку и используйте его, как монтажный провод к выходной клемме вашего блока питания. Естественно от концов этого шунта пойдут два провода к измерительной головке.

Цифровой амперметр и вольтметр для блока питания

На рисунке 1 представлена схема цифрового амперметра и вольтметра, которая может быть использована, как дополнение к схемам блоков питания, преобразователей, зарядных устройств и т.д. Цифровая часть схемы выполнена на микроконтроллере PIC16F873A. Программа обеспечивает измерение напряжения 0. 50 В, измеряемый ток — 0. 5 А.

Самодельный цифровой амперметр, самодельный цифровой вольтметр, shema1

Для отображения информации используются светодиодные индикаторы с общим катодом. Один из операционных усилителей микросхемы LM358 используется в качестве повторителя напряжения и служит для защиты контроллера при внештатных ситуациях. Все-таки цена контроллера не так уж и мала. Измерение тока производится косвенным образом, при помощи преобразователя ток-напряжение, выполненного операционном усилителе DA1.2 микросхемы LM358 и транзисторе VT1 – КТ515В. Почитать о таком преобразователе еще можно здесь и здесь. Датчиком тока в этой схеме служит резистор R3. Преимуществом такой схемы измерения тока состоит в том, что здесь отпадает необходимость точной подгонки миллиомного резистора. Скорректировать показания амперметра можно просто триммером R1 и в довольно широких пределах. Сигнал тока нагрузки для дальнейшей оцифровки снимается с нагрузочного резистора преобразователя R2. Напряжение на конденсаторе фильтра стоящем после выпрямителя вашего блока (вход стабилизатора, точка 3 на схеме)питания не должно быть более 32 вольт, это обусловлено максимальным напряжением питания ОУ. Максимальное входное напряжение микросхемного стабилизатора КР142ЕН12А – тридцать семь вольт.

Регулировка вольтамперметра заключается в следующем. После всех процедур — сборки, программирования, проверки на соответствие на собранное вами произведение подают напряжение питания. Резистором R8 выставляют на выходе стабилизатора КР142ЕН12А напряжение 5,12 В. После этого вставляют в панельку запрограммированный микроконтроллер. Измеряют напряжение в точке 2 мультиметром, которому вы доверяете, и резистором R7 добиваются одинаковых показаний. После этого к выходу (точка 2) подключают нагрузку с контрольным амперметром. Равенства показаний обоих приборов в данном случае добиваются при помощи резистора R1.

Как сделать шунт, screen

Резистор-датчик тока можно изготовить самому, используя для этого, например, стальную проволоку. Для расчета параметров этого резистора можно использовать программу «Программа для работы с проволокой» Программу скачали? Открыли? Значит так, нам нужен резистор номиналом в 0,05 Ом. Для его изготовления выберем стальную проволоку диаметром 0,7мм – у меня она такая, да еще и не ржавеющая. С помощью программы вычисляем необходимую длину отрезка, имеющего такое сопротивление. Смотрим скрин окна данной программы.

Понравилась статья? Поделиться с друзьями: